Traumatic Injuries to the Foot and Ankle

Dr. Joseph N. Daniel
Clinical Associate Professor of Orthopaedic Surgery
Foot and Ankle Service, The Rothman Institute
Thomas Jefferson University Hospital
Philadelphia, PA
Disclosure

Smith-Nephew
Wright Medical
Calcaneus Fractures
Talus Fractures
Lisfranc Complex Injuries
CALCANEUS FRACTURES
Objectives

- Anatomy
- Mechanisms of Injury
- Imaging
- Fracture Patterns
- Treatment Options / Timing of Surgery
Anatomy
Mechanisms of Injury

• Axial load
 – fall from height
 – MVA

• Inversion / eversion injuries

• Forceful muscular contractions
Imaging

- Assumed WB AP, lateral and Mortise views ankle
- Assumed WB AP, lateral and oblique views foot
- Harris heel view
Bohler’s angle
25°-40°

Gissane’s angle
120°-145°

Neutral triangle
Imaging

- CT scan
 - 2 mm transaxial, coronal, sagittal and 3-D reconstruction views
 - Semi-coronal CT = most important view
Fracture Patterns

- Direction of force
- Quality of bone
- Position of foot

Extra-Articular: 25%
Intra-Articular: 75%
Extra-Articular Fractures
Anterior Process Fracture

- Anterior inferior tibiofibular ligament
- Anterior talofibular ligament
- Bifurcate ligament

comminuted frx
Calcaneal Body Fracture

Type 3

(a.)

[Diagram and images of calcaneal body fracture]
Sustentaculum Tali Fracture
Calcaneal Tuberosity Fracture

Achilles avulsion fractures
Peroneal Tubercle Fracture, Lateral Process Fracture, Medial Calcaneal Process Fracture
Intra-Articular Fractures
Intra-Articular Fractures

• Associated injuries:
 – spine frx
 • thoracolumbar
 – lower extremity injuries
 – bilateral frx
Primary Fracture Line
CCJ extension

lateral wall blow-out

medial wall shortening

varus mal-alignment
Bohler’s angle ↓
Gissane’s angle ↑
Sanders Classification

- Type IIA
- Type IIB
- Type IIC
- IIIAB
- IIIAC
- IIIBC

Lateral
Central
Medial
Intra-Articular Fracture Management

- Fracture pattern:
 - displacement (2 mm)
 - classification
- Open fracture

- Relative contraindications:
 - edema / blisters
 - DM
 - severe PVD
 - smoking
 - elderly with minimal demands
 - non-compliance
 - surgeon experience
Non-op CRUA Perc. Stabilization ORIF Primary Arthrodesis +/- ORIF
Sanders Classification

- Non-operative:
 - Type I (non-displaced / minimally displaced frx)
 - relative contraindications
| Non-op | CRUA | Perc. Stabilization | ORIF | Primary Arthrodesis +/- | ORIF |
Open Calcaneus Fracture

I & D traumatic wounds until clean

medial / plantar

< 4cm

epithelium re-approximated

stable wound @ 7 days

ORIF

wound location

No

No

perc. stabilization

Yes

Yes

Yes
Open Calcaneus Fracture
Open Calcaneus Fracture
Non-op CRUA Perc. Stabilization ORIF Primary Arthrodesis +/ ORIF
Sanders Classification

• Operative:
 – ORIF
 • Type II, III, IV
 – primary arthrodesis +/- ORIF
 • Type IV
• Formal ORIF
• Primary subtalar arthrodesis +/- ORIF
• Formal ORIF
• ORIF with primary subtalar arthrodesis
Calcaneus Fractures Treatment Summary

• Non-operative:
 – non-displaced / minimally displaced frx
 – relative contraindications

• Operative:
 – displaced extra-articular frx with skin tenting; impending skin compromise
 – anterior process frx with > 25% CCJ involvement
 – calcaneal body frx with ↑ width; ↓ height; arch disruption
 – displaced intra-articular frx
 – certain open frx
<table>
<thead>
<tr>
<th>Fracture</th>
<th>Non-op</th>
<th>CRUA</th>
<th>Perc.</th>
<th>ORIF</th>
<th>Primary Arthrodesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>anterior process</td>
<td>< 25% CCJ</td>
<td></td>
<td></td>
<td>> 25% CCJ</td>
<td></td>
</tr>
<tr>
<td>calcaneal body</td>
<td>X</td>
<td></td>
<td></td>
<td>↑ width; ↓ height</td>
<td></td>
</tr>
<tr>
<td>susten. tali</td>
<td>X</td>
<td>PF + I</td>
<td></td>
<td>displacement</td>
<td></td>
</tr>
<tr>
<td>calcaneal tuberosity</td>
<td>X</td>
<td></td>
<td>skin tenting; impending compromise</td>
<td>skin tenting; impending compromise</td>
<td></td>
</tr>
<tr>
<td>peron. tub. / med. calc. process</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>joint depression type</td>
<td>Sanders I</td>
<td></td>
<td></td>
<td>Sanders II, III, IV</td>
<td>Sanders IV</td>
</tr>
<tr>
<td>tongue type</td>
<td>Sanders I</td>
<td></td>
<td></td>
<td>Sanders II, III, IV</td>
<td>Sanders IV</td>
</tr>
<tr>
<td>open</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
• **Emergent:**
 - compartment syndrome*
 - open fracture*
 - skin tenting; impending skin compromise
 - cannot reduce frx-dislocation

• **Urgent (within 3 wks):**
 - displaced intra-articular frx
 - displaced extra-articular frx
 - anterior process frx with > 25% CCJ involvement

• **Elective:**
 - massive edema; medical co-morbidities
 - non-reconstructable intra-articular frx
 - symptomatic frx nonunion / malunion
Talus Fractures
Objectives

- Incidence
- Anatomy
- Mechanisms of Injury
- Imaging
- Fracture Patterns
- Treatment Options / Timing of Surgery
Incidence

- 3% of all foot fractures
- < 1% of all fractures
- Types:
 - Neck: 50%
 - Body: 7-38%
 - Head: 10%
Anatomy

• Talus
 – Vital part of ankle + subtalar complex of joints
 • Vertical WB forces transferred to horizontal support structures of foot
 – Small; irregular shape
 – No muscular attachments
 – 70% surface covered with articular cartilage
 – Vascular supply tenuous
Anatomy

• Articulations btwn:
 – Tibial plafond and dome of talus
 – Posterior facet of talus with calcaneus
 – Medial and anterior facets of talus and calcaneus and btwn head of talus and posterior surface of navicular
Anatomy

• Articulations:
 – Posterior facet
 • Inferior surface talus = concave
 • Superior surface calcaneus = convex
 – Anterior + middle facets
 • Inferior surface talus = convex
 • Superior surface calcaneus = concave
Anatomy

- Subtalar joint motion
 - Screw mechanism
- Talonavicular joint motion
 - Ball and socket mechanism
Mechanisms of Injury

<table>
<thead>
<tr>
<th>Fracture Location</th>
<th>Mechanism</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talar neck</td>
<td>axial compression + DF</td>
<td>high energy trauma</td>
</tr>
<tr>
<td>Talar Head</td>
<td>DF + I</td>
<td>MVA; fall from ht</td>
</tr>
<tr>
<td>Talar Body</td>
<td>axial compression</td>
<td>high energy trauma</td>
</tr>
<tr>
<td>Lateral Process</td>
<td>DF + I</td>
<td>snowboarding</td>
</tr>
<tr>
<td>Posteromedial</td>
<td>pronation + DF</td>
<td>sports; MVA; fall from ht</td>
</tr>
</tbody>
</table>
Imaging

- Assumed WB AP, lateral and Mortise views ankle
- Assumed WB AP, lateral and oblique views foot
Imaging

• CT scan
 – 1.5 mm transaxial, coronal, sagittal and 3-D reconstruction views
Fracture Patterns

• Talar neck fracture:
 – MOI: axial compression and DF
 – Hawkins classification
 • Type I: non-displaced; no sublux or disloc of STJ
 • Type II: displaced; ankle nl; STJ sublux or disloc
 • Type III: complete disloc of ankle + STJ
 • Type IV: complete disloc of ankle + STJ + TNJ
Fracture Patterns

• Talar head fracture:
 – MOI: DF + I
 – Involves: middle facet + TNJ
Fracture Patterns

- Talar body fracture:
 - MOI: axial load
Fracture Patterns

• Lateral process fracture:
 – AKA “snowboarder’s frx”
 – MOI: DF + I
Fracture Patterns

- Posteromedial fracture
 - MOI: direct impact; pronation + DF
Treatment

• Talar neck fracture:
 – ORIF
Talar head fracture:
Treatment

• Talar body fracture:
 – ORIF +/- medial malleolar osteotomy
Treatment

- Posteromedial fracture
 - MOI: direct impact; pronation + DF
Lisfranc Complex Injuries
Objectives

- Incidence
- Anatomy
- Mechanisms of Injury
- Clinical Examination
- Imaging
- Treatment Options / Timing of Surgery
- Complications
Incidence

• Uncommon
 – 0.2% of all frx
 – 55,000 Lisfranc injuries annually
 • Does not include ligamentous injuries
Incidence

- M > F
- Avg age: mid 30’s
- Up to 40% missed
 - Most commonly on multi-trauma patients
Anatomy and Biomechanics

• Tarsometatarsal Joints (TMTJ’s)
 – Articulation btwn 1st 3 MT and their respective cuneiforms
 – Articulations btwn 4th and 5th MT and cuboid
 – Stability
 • osseous
 • ligamentous
 • tendinous
Anatomy and Biomechanics

Osseous configuration

• Greatest stability
• Coronal plane and transverse plane
Anatomy and Biomechanics

osseous configuration

• Coronal plane stability
 – TMTJ’s form symmetric “Roman” arch
 • Wider dorsal wedge shape
 – 2d and 3d MT bases
 – middle and lateral cuneiforms
Anatomy and Biomechanics
osseous configuration

- Transverse plane stability
 - 2d MT
 - Longest
 - Keystone
 - Surrounded by 5 bones
 - limits medial – lateral translation
Anatomy and Biomechanics

ligamentous configuration

• Stronger plantarly
• MT’s attached to more proximal articulations
• Lesser MT’s attached via interosseous ligaments
• No IM ligament bwtw 1st and 2d MT’s
Anatomy and Biomechanics
ligamentous configuration

- 1st MT attached only to medial cuneiform
- 2d MT attached to medial cuneiform via Lisfranc ligament
 - 2 separate bands in 22\% of population
 - Dorsal weaker
 - Plantar stronger
Anatomy and Biomechanics

tendinous configuration

• Tibialis Anterior
 – Insertion: medial aspect proximal 1st MT

• Peroneus Longus
 – Insertion: plantar lateral aspect 1st MT
Anatomy and Biomechanics

primary stabilizers

- 2d MT
 - Keystone
 - Surrounded by 5 adjacent bones
 - 1st and 3d MT
 - Recessed between medial, middle and lateral cuneiforms
- Lisfranc ligament
 - Plantar 2d MT base to medial cuneiform
Anatomy and Biomechanics

secondary stabilizers

• Plantar fascia
• Intrinsic muscles
• Insertions of Tibialis Posterior, Tibialis Anterior and Peroneus Longus
Mechanisms of Injury

- MVA
 - 65%
- Fall
- Crushing Injury
- Twisting Injury
Mechanisms of Injury

• Forces
 – Direct
 – Indirect
Mechanisms of Injury

• Direct Forces
 – Less common
 – Crushing injury
 – Outcome:
 • Fracture comminution
 • Soft tissue damage
 • Compartment syndrome
Mechanisms of Injury

- F distal to Lisfranc complex \Rightarrow plantar displacement of MT bases

- F proximal to Lisfranc complex \Rightarrow dorsal displacement of MT bases
Mechanisms of Injury

• Indirect Forces
 – More common
 – Rotational Injury
 • Foot: sl. equinus
 • MT: firmly planted
 ➔ body projected over forefoot
 – twisting + rotation + abduction
Mechanisms of Injury

• Indirect Forces
 – Rotational injury
 • Failure under tension dorsally
 • Continued abduction leads to:
 – 2d metatarsal base dislocation
 – Lateral displacement of lesser metatarsals
 – Compression fracture of cuboid
Mechanisms of Injury

- Dorsal displacement of MT bases
Mechanisms of Injury

• Direct or indirect forces:

• Perforating branch of dorsalis pedis aa may disrupt
 – Hemmorhage with ↑’d interstitial fluid P ➔ compartment syndrome
Clinical Examination

- Routine foot and ankle examination
 - NV
 - Sensation
 - Motor power
 - Capillary refill
 - PROM ankle, subtalar, Chopart complexes
 - Forefoot examination
Clinical Examination

• Specific Foot and Ankle Examination
 – Tenderness, crepitus and deformity at Lisfranc complex
 – Compartments
 • soft
 • TTP
 • compressible
Clinical Examination

• Specific Foot and Ankle Examination
 – Skin integrity
 • Tenting
 • Frx blisters
 • Ecchymosis
 – Plantar mid foot
 » Classic finding
 – Pronation abduction maneuver
Imaging

- Assumed WB AP, lateral and 30° IO images
- If unable to perform WB images and ?? midfoot injury, repeat films in 2 wks in WB posture
Imaging

- AP:
 - Frx pathology
Imaging

• AP:
 – Frx pathology
 – Fleck sign
 • Avulsion frx off medial base of 2d MT or lateral border of medial cuneiform
Imaging

- **AP:**
 - Frx pathology
 - Fleck sign
 - Avulsion frx off medial base of 2d MT
 - Alignment
- **Alignment:**
 - Medial border 2d MT with medial border middle cuneiform
Imaging

- **Alignment:**
 - 1st intermetatarsal space continuous with space between medial and middle cuneiforms
 - NI: 1.3 mm
Imaging

- Lateral:
 - Frx pathology
Imaging

• Lateral:
 – Frx pathology
 – Evaluate for dorsal displacement of MTs relative to cuneiforms
Imaging

• Lateral:
 – Frx pathology
 – Evaluate for dorsal displacement of MTs relative to cuneiforms
 – Change in distance between plantar aspect medial cuneiform and 5th MT
Imaging

• 30° IO:
 – Frx pathology
– Alignment:
 • Lateral border 3d MT with lateral border of lateral cuneiform
Imaging

- Alignment:
 - Medial border 4th MT with medial border cuboid
Imaging

– Alignment:

 • 2d IM space continuous with space btwn lateral cuneiform and cuboid
Imaging

• **Stress Radiographs:**
 – Ligamentous injury with equivocal examination
 – Ankle block anesthesia or O.R. setting
Imaging

• Malreduction:
 – > 15° abduction of 1st MT
 – > 2 mm lateral shift of at least 1 MT
Imaging

• **Magnetic Resonance Imaging:**
 – Clear diastasis on WB AP image
 • do not MRI
 – Equivocal or nl radiographs with pronounced mechanism and/or clinical examination
 • Consider MRI
Imaging

- **CT Scan:**
 - Image all Lisfranc complex injuries
 - 1.5 mm transaxial, sagittal and coronal cuts in assumed WB position
Treatment

• Optimal Treatment:
 – Anatomic stable reduction of TMTJ’s
WB AP, lat and 30 degree IO

stable
(<2mm displacement)
repeat WB films in 2 wks
stable
stable
closed treatment
unstable
surgery

unstable
(>2mm displacement)
surgery
Treatment

• Midfoot Sprain
 – Stable:
 • SLNWBC until asymptomatic then SLWC or boot with WBAT X 6-8 wks
 • Activity level to tolerance
Treatment

• Midfoot Sprain
 – Unstable:
 • >15° 1st MT abduction
 • >2 mm lateral shift of any MT
 • ORIF vs. arthrodesis
Treatment

• Midfoot Sprain
 – Equivocal:
 • MRI
 – No tear or partial tear of Lisfranc ligament (< 50%)
 » treat as sprain
 – > 50% tear of Lisfranc ligament
 » ORIF
 » arthrodesis
Treatment

• Operative:
 – Indications:
 • Any degree of displacement of frx of TMTJ’s (unstable)
 • Pure ligamentous injury with instability
Treatment

• Operative:
 – Timing of surgery based upon:
 • Presence of compartment syndrome
 • Degree of soft tissue swelling
 • Can be performed up to 6 wks after injury
Treatment

- Fracture Fixation Options:
 - K-wire
 - ORIF
 - arthrodesis
Treatment

- **K-wire:**
 - Easy to insert
 - Easy to back out
 - Rarely used as sole means of fixation
 - Useful with:
 - Severe frx comminution
 - Compartment syndrome with poor soft tissue envelope
 - Can be performed up to 6 wks after injury
Treatment

- Fracture Fixation Options:
 - ORIF
 - 3.5 or 4.0 screws
 - Cannulated
 - Non-cannulated
Treatment

- Fracture Fixation Options:
 - ORIF
 - Mini-fragment plates
Treatment

- Fracture Fixation Options:
 - Arthrodesis
 - Joint preparation and mode of fixation different
Treatment

- Lee et al. Foot and Ankle International May 2004
Treatment

• Pure Ligamentous Injury Options:
 – K-wire
 – K-wire + screw fixation
 – Screw fixation
Treatment

• Operative:
 – In absence of compartment syndrome, ORIF
 – Algorithm of stabilization based on column involvement
Treatment

- Operative:
 - Isolated medial column or medial + middle column injury, reconstruct medial to lateral
Treatment

- Operative:
 - Lateral column injury
 - Ex fix lateral column
 - Stabilize lateral column
 - Stabilize medial column
 - Stabilize middle column
Rehabilitation

- NWB 6-12 wks
- HWR s/p ORIF at 12-16 wks
 - Retention of HW?
- WBAT
- Custom B/L MLA support x 6 mo
- Avoid high impact L.E. athletic activity x 3 mo
Complications

• Acute:
 – Compartment syndrome

• Long term:
 – Post-traumatic arthritis
 • 30%
 – Pes planus + forefoot abduction
Thank you

“BE ASHAMED TO DIE UNTIL YOU HAVE DONE SOMETHING GOOD FOR MANKIND”
Dr. Vernon Johnson, American Pastor during the Revolutionary War